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A dense interacting Bose or Fermi gas is considered. Within the Kadanoff-Baym real-time
Green-function technique a generalized kinetic equation is derived in the nonequilibrium ladder
approximation. As a Markovian limit the Boltzmann-Uehling-Uhlenbeck equation is recovered. The
relevance of retardation effects in the kinetic equation of dense systems is shown. It turns out that
the stationary solution of the generalized kinetic equation reproduces the second virial coefficient of
the equation of state, including the Beth-Uhlenbeck quantum corrections. We establish a generalized
kinetic equation describing correlation effects in a consistent approach to nonequilibrium for Bose
and Fermi systems. In this way we give a generalization of the Beth-Uhlenbeck formula that applies
to nonequilibrium and to finite systems. The derivation makes use of the time dependent T-matrix
equation, which establishes a generalization of the Bethe-Goldstone equation. The correlated parts
of the density and energy, which can be interpreted as virial corrections, are thermodynamically
consistent. In this way global energy conservation is fulfilled.

PACS number(s): 05.20.Dd, 82.20.Mj, 05.30.—d, 05.60.+w

I. INTRODUCTION

The dynamical description of correlated systems in
nonequilibrium is a current frequently investigated task.
The concerned physical systems range from hot com-
pressed nuclear matter, semiconductor transport to dense
nonideal plasmas. For instance, most approaches to par-
ticle production properties in heavy ion reactions use the
Boltzmann-Uehling-Uhlenbeck (BUU) approach [1-5], in
that they assume instantaneous binary collisions neglect-
ing the collision duration time and, therefore, retardation
effects.

Other approaches to the kinetic theory of higher den-
sities show the evidence of these effects [6]. Recent calcu-
lations establish an effect to the relaxation times in rela-
tivistic heavy ion collisions [7] or in plasma situations [8].
One result is that the correlation time of two particles or
the collision duration time Tnem interferes with the mean
field relaxation time Typ.

In conventional microscopic calculations it is assumed
that the mean-field relaxation time is small compared
with the momentum relaxation time g < Trel. There-
fore, one usually uses a local potential interaction for the
mean field, whereas the collisions are performed with a
finite range interaction [9]. These collision integrals con-
tain a transition matrix and the statistical Pauli blocking
for Fermions. By this way, only the Hartree-Fock energy
is conserved. Consequently, conventional transport of the
BUU type is only justified if Tnem < TMF <K Trel-

The success of these calculations in describing one-
particle dynamics and experiments is striking over a great
energy range [9-13]. Nevertheless some questions remain
unsolved, among them should be mentioned: (i) The
transverse properties of collective flow are unsatisfacto-
rily described [14]. (ii) The formation of bound states is
not included in the solved kinetic equations but added in
a second step by a coalescence model [15,16].
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What have these two main problems in common, the
inclusion of bound states and the retardation effects? A
preliminary hint to the close connection can be found
from the consideration of the above introduced different
time scales. In the case that the system forms bound
states during collisions, the collision duration time be-
come very large compared with the relaxation time of
the system. The bound state can be considered as a long
living correlation in the system. In this sense, memory
effects become important if bound states arise.

In the thermodynamical picture, the one-particle den-
sity is expected to consist of a free and a correlated
part n = nyf + TNcorr, Where the correlated part of the
density has a contribution from the bound states and
from the scattering states of two correlated particles.
Until now, this problem was concerned in equilibrium
approaches (see [17] and citations therein). In equilib-
rium, the bound state contributions to the equation of
state is described by the Beth-Uhlenbeck approach [18].
The generalized Beth-Uhlenbeck approach goes beyond
the Bruckner-Bethe-Goldstone theory. It reflects the fact
that correlated nucleons can form bound states and scat-
tering states. By this way, it is possible to describe
the Mott transition as pressure ionization in a many-
particle framework [17]. A further interesting feature is
the occurrence of two phase transitions, i.e., the liquid
gas phase transition and the phase transition to the su-
perfluid state. Similar investigations are performed for
nonideal plasmas and for excitons in semiconductors [19].
The simultaneous treatment of bound state formation
and Bose condensation is one of the challenging prob-
lems, which can be studied by this approach.

The kinetic theory for such strongly correlated sys-
tems and, therefore, the proper nonequilibrium approach
is much more complicated. Several attempts are made
to generalize the kinetic equations to dense quantum
systems [20-27]. This description of correlated parti-
cles leads to virial corrections to the equation of states
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[21-23]. The correct Beth-Uhlenbeck virial correction
was given, e.g., in [28]. The improvement of the quantum
kinetic equations are still in discussion [29]. Currently,
Snider gives a generalized kinetic equation [30], which
leads to a reinterpretation of the distribution function
in correlated and free parts [31]. Other approaches in-
corporate the correlations into the equation of motion
in a stochastic approximation [32]. This results in a
Boltzmann-Langevin equation for the fluctuating single-
particle density [33].

The aim of the present paper is to close the gap be-
tween a kinetic approach including memory and the de-
scription of correlated states. It will be shown that the
first order retardation effects in the kinetic equation leads
to the same expression for the correlated density or the
energy in equilibrium, which is known from the quantum
Beth-Uhlenbeck approach. We can link the approaches
of equilibrium to the kinetic level of description and gen-
eralize it by this way to nonequilibrium situations found
in finite systems. Therefore, we consider this as a gener-
alization of the Beth-Uhlenbeck approach to nonequilib-
rium and finite systems.

The general starting point in deriving kinetic equa-
tions is the coupled set of equations of motion for the
reduced density operators. This set was derived by Irv-
ing and Zwanzig [34]. The formal structure is similar
to the so-called Bogoliubov-Born-Green-Kirkwood-Yvon
(BBGKY) hierarchy [35] for reduced distribution func-
tions in classical statistical physics. The first to use this
BBGKY hierarchy in deriving kinetic equations were Bo-
goljubov, Born and Green, and Kirkwood [36-38]. The
quantum Boltzmann equation differs from the classical
one in the collision term, which takes into account that
the final scattering states can be occupied and, con-
sequently, blocked by the Pauli exclusion principle for
Fermionic systems. Moreover, the quantum mechani-
cal transition rate is used, rather than the classical one.
Of the various other extensions proposed for the ordi-
nary Boltzmann equation, the work of Klimontovich and
Kremp [39], McLennan [40], and Ropke and Schulz [41]
should be mentioned, which treat quantum gases with
bound states, for a review see [42,43].

A fundamental assumption in deriving kinetic equa-
tions, Bogoliubov’s principle of weakening of initial cor-
relations, was generalized by Zubarev [44]. By this way
it is possible to treat also long living correlations leading
to the the Enskog equation.

The most powerful and elegant techniques to describe
the entire region of density and temperature as well as
situations far from equilibrium, where linear response
fails, is the method of the quantum-statistical Green’s
function. It was introduced in 1955 by Matsubara [45]
for describing many-particle systems. In 1959, Mar-
tin and Schwinger [46] introduced Green’s-function tech-
niques for the description of correlated many-body sys-
tems starting from a hierarchy of equations of motion
for the imaginary-time Green’s functions. Kadanoff and
Baym [47] presented a complete transport theory based
on these many-body techniques in 1962. An important
component in the construction of this transport theory
was an analytic continuation of the equilibrium Green’s

4247

function from the imaginary times to real times. This
step was necessary to describe nonequilibrium situations.

At about the same time, Schwinger [48] initiated the
use of real-time Green’s functions. These functions are
defined on a directed contour and are sometimes also
called path-ordered Green’s functions. Both Keldysh [49]
and Craig [50] used this concept and formulated, with
the help of perturbative methods, a Dyson equation. The
real-time Green’s functions allow the properties of many-
particle systems to be investigated in a ground state, in
a finite temperature equilibrium state and in a nonequi-
librium situation, in a consistent manner.

Any subsequent studies merely provided an alterna-
tive derivation either of the kinetic equation itself or of
the T-matrix equation, the most elaborate of which was
given by Danielewicz [6]. This derivation mostly based
itself on a simple approximation by means of a pertur-
bation series. However, in doing so, it was not clear
what this approximation implied for higher-order Green’s
functions. This method was extended by Kremp and co-
workers [25,51] and later on, it was used by Danielewicz
[52] as well as Botermans and Malfliet [42].

Applications of real-time many-body methods range
from problems of quantum chromodynamics [53],
through nuclear physics [42,54-56], to theory of liquid
helium [57], physics of plasmas [58], physics of condensed
matter [59], astrophysics [60], and cosmology [61]. Thus,
it is the most general formalism of the many-particle the-
ory we have today.

The outline of the paper is as follows. In Sec. II,
we give a short derivation of the Kadanoff-Baym equa-
tion with the special emphasis on the equivalence of an
appropriate initial condition and the Keldysh contour.
This leads to the quantum kinetic equation with exact
time behavior for the one-particle distribution function.
This equation is not closed, which is a problem that is
handled by the spectral properties of a system. We will
discuss this point with a certain ansatz, exact at the level
of Hartree-Fock self-energies. The resulting quantum ki-
netic equation shows retardation.

In Sec. III, we derive a generalized Bethe-Goldstone
equation including nonequilibrium Pauli blocking and re-
tardation. With the help of this general T-matrix ap-
proximation for the self-energy, we end with the gen-
eralized kinetic equation in Sec. IV. From this equa-
tion, it is shown in Sec. V that in first order retardation
the virial corrections follow, which are equivalent to the
Beth-Uhlenbeck terms. As demonstrated in Sec. VI, the
corrections to the density and to the energy are thermo-
dynamically consistent also in the case of quasiparticle
energies, which are density and temperature dependent.

II. REAL-TIME GREEN’S-FUNCTION
TECHNIQUE

A. Exact kinetic equations

We consider a system of interacting Fermions or
Bosons with the Hamiltonian,
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(1)

with 1 = (r,s,7,...,) denoting the single-particle vari-
ables (orbital, spin, isospin, etc), Vp is the normaliza-
tion volume. The annihilation and creation operators for
Fermions or Bosons are, respectively,

[111, a2]:i: =0, [al,ag]ﬂ; = 412,

where upper signs refer to the Fermions and lower signs
to the Bosons.

In order to describe correlations in highly nonequilib-
rium situations, we define various correlation functions
by different products of creation and annihilation opera-
tors in the Heisenberg picture,

6> (1,2) = +ar(t2)ab(t2)),
G<(1,2) = F 3 {a} () (t2)). (2)

Here the () denotes the average value with the unknown
statistical nonequilibrium operator p. The causal Green
function is given by

G(1,2) = O(t; — t2)G™(1,2) — O(t2 — t1)G<(1,2). (3)

It is furthermore useful to introduce the retarded and
advanced Green functions according to

GR(1,2) = O(t; — t2) [G™(1,2) — G<(1,2)],
G4(1,2) = Ot — t1) [G<(1,2) — G™(1,2)]. (4)

Instead of determining the nonequilibrium statistical
operator, we follow another concept of statistical mechan-
ics and use the equation of motion of the creation and
annihilation operators to derive kinetic equations, which
may be solved with the appropriate choice of boundary
and initial conditions. Applying the equation of motion
for the field operators in the Heisenberg picture one finds
the Martin-Schwinger hierarchy [47], where the single-
particle Green’s function couples to the two-particle one,
etc. A formally closed equation for the single-particle
Green’s function can be reached with the introduction of
the self-energy,

F i/d2V(1 - 2)Ga(12,1'21) = / dix(1,1)G4(1,1"),
C

(5)

where the contour of integration C has to be determined
in such a way that the boundary conditions are fulfilled.
The self-energy can be split into two parts,

¥(1,1") = Zgp(1,1) + Z.(1,1), (6)

with the Hartree-Fock part,

.1
Zur(1,1) = Fiya [V(1212)

0 g9/

FV(1221)]G(22)5 Ly, (7)
and the remaining correlation part, which can be written
in analogy to the causal Green function,

Ye(1,2) = O(t; — t2)27(1,2) — O(tx — t1)27(1,2). (8)

In order to obtain solutions and the path of integration
C, it is necessary to specify the initial conditions. In
many physical situations, the condition of weakening of
initial correlation is an appropriate choice [25],

tlgn_loo G2(121'2')|t1__.t2+51 ty =ty +e
= G(11)G(22") F G(12))G(21'). (9)

From this equation, we get

“+oo
/diE(l,i)G(i,l’) :/ 41 {2(1,1)G(1,1")
C

—00

-5, 1)G~(1,1)}. (10

It is easy to see that the boundary condition is fulfilled,
since the contribution (10) vanishes in the limit ¢} =
t¥ — —co. For the case t; < t}, we can write, e.g.,

/m df {S(1L, TG, 1) - £<(1,1)6>(1,1)}

t1 t] B
:/ dt‘12>(1,i)a<(i,1')+/ A5 5<(1,1)G<(1, 1)
—o0 t1
+ dt,£<(1,1)G> (1,1
"

—/oo d6HE<(1,1)6> (1,1) - 0. (11)

Equation (11) can be split into two parts [25], accord-

ing to
+oo ty —oo
/ df, = / df, + / d,
—oo —oo t

’
1

and a contour of time integration follows, which is equal
to the Keldysh contour.

With the expressions (5) and (10), we can finally write
the first equation of the Martin-Schwinger hierarchy in
the following form
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0 (?Vl)z '

=6(1-1)F 1/ d2V (1 —2)Gy(121'21)
C
- / dx(1,1)¢(, 1)
C
+oo _ B _ _
_ / 1 {3(1,1)G(1,1) - 5<(1,1)G> (1, 1)} .
(12)
Using the definition (3), the Kadanoff-Baym equation,

first derived by Kadanoff and Baym and Keldysh [47,49],
is obtained in the following manner

9 _ OSHF(pRT)

1,0 p  OSEF(pRT)
[ (2 2 £

Mg dp
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., 0 (%Vl)z 2 '

>
= /d’!'_]_EHF(’I']_,T-‘l,tl)Gf(T‘kl,t]_ll’) (S(tl — tll)

t B _ s
+/ di[2”(1,1I) - £<(1,1)] GF(1,1')
s B _
- dix<(1,1) [G7(1,1") - G5 (1,1)] .  (13)
Subtracting the adjoined equation and setting t, = t, we
finally obtain the time diagonal part [62], i.e., the equa-

tion for the Wigner distribution function f¥ (pRT) =
FiGS (pRTT = 0) of species a,

8 w
a—p] ¥ (pRT)

- [ arf{en o 3r) 5 (- )}, {65 (T o) 52 (rmr - o)) ]

Here, we have introduced Wigner coordinates following
7 =t—tand T = (t + ¢)/2. Further, p is the Fourier-
transform of r = r; — r] and the macroscopic space vari-
able is R = (r;+7})/2. This equation is exact in time and
we used gradient expansion for space variables assuming
small orbital density fluctuations compared with the sys-
tem anisotropy [62]. Nonlocal terms can be derived by
expanding up to a second order in space gradients [21].

Another compactly written form of the Kadanoff Baym
equation is given in (A4). Using the quasiparticle ap-
proximation in (A4) and neglecting the time retardation
in the correlation functions, one derives the well-known
Landau-Silin equation. This equation yields the Landau,
Boltzmann or Lennard-Balescu equation depending on
the approximation one chooses for the self-energy. The
different self-energy renormalization terms at the drift
side in (A4) are condensed in the incomplete time inte-
gration of (14).

This shows the close relation between the self-energy
correlation terms in (A4) and the memory in (14). This
will be made explicit in Sec. IV. Therefore, we focus
on the retardation effects and keep the time convolution
exact.

B. The problem of ansatz

In order to close the kinetic equation (14), it is nec-
essary to know the relation between G~ and G<. This
problem is known as ansatz and must be constructed self-
consistently with the required approximation of the self-
energy. The conventional way is to change the correlation

(14)

[

functions to the generalized distribution function and to
the spectral one in frequency domain, which is an exact
transformation,

G< = Fia(pwRT)F (pwRT),
G~ =ia(pwRT)[1 — F(pwRT)]. (15)

Neglecting the off-pole part in the spectral function,
one finds a relation of the correlation function and the
Wigner distribution function f%. One gets for G< in
time space,

G<(prRT) = Fie @R £l (pRT), (16)

with € the quasiparticle energy (26). This is quite good
as long as the quasiparticle picture holds true and no
memory effects play a role. This is connected with the
neglect of the correlated parts in the equation of state
(27). Therefore the simple ansatz, denoted above as con-
ventional ansatz, will certainly fail in dense correlated
systems. This will be shown explicitly when the equiv-
alence of retardation effects and the correlation part in
(25) will be shown in Sec. V.

Another obscure discrepancy is the fact that with the
conventional ansatz, we have some minor differences in
the resulting collision integrals, if we compare it with the
results from the density operator technique [62,63]. With
the conventional ansatz, we get just one half of all retar-
dation times in the various time arguments [62,64]. This
annoying difference has remained obscure until the recent
work of Lipavsky et al. [65]. The general construction of
this generalized ansatz is given in the Appendix B. Here,
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we give the derivation for the Hartree-Fock approxima-
tion, where the ansatz is exact. Using the time diagonal
Hartree-Fock self-energy in the equation for the retarded
Green function (IIC), one can show that the semigroup
relation holds [65],

iGR(tty) - GR(t1ts) = GE(tty). (17)

Now the integral form of the Kadanoff Baym equations
(13) reads [6]

G=(11') = GR(12) [(GF(23)) 7G5 (34)(G¢ (45))

+X<(25)] GA(51").

Here, we concentrate only on the time evolution, 1 means
t1, and assume summation over equal indices. First let
us set t; > t}. Then by using the property (17), one finds

G<(11") = iGR(11") - G<(1'1).

Including the opposite case t; > t;, one derives

G<(11') = iGR(12)G<(22) — iG*(12) - G<(11)

—sifw (n7- ) awrr). 0y

and analogous

G7(11) =1 [1 F fw (p,T — %)] a(p,7,T). (19)

Therefore, the connection between G~ and G< is given
and the kinetic equation can be closed. If we neglect the
time retardation in the distribution functions, we recover
the conventional ansatz (16).

This ansatz is superior to the conventional Kadanoff-
Baym ansatz in several respects: (i) it has the correct
spectral properties, (ii) it preserves causality, (iii) the
quantum kinetic equations derived with Eq. (A4) coin-
cide with those obtained with the density matrix tech-
nique [62], and (iv) it reproduces the Debye-Onsager re-
laxation effect [66].

In order to get more physical insight into this ansatz,
one can transform to frequency representation,

<(hwRT) = F 21'/000 dreos (% [hwr — e(k, R, T)T])

xf(k,T-—;—-). (20)
Neglecting the retardation in f, one recovers the conven-

tional ansatz (16). By this way, the generalized ansatz
provides causality [65].

C. Spectral properties

The knowledge of the retarded Green function provides
the spectral function and, therefore, the spectral proper-
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ties of the system. The Dyson equation for the retarded
one reads

( V1) '
(ha-tl+ o )GR(I,I)

=6(1-1)+ /dizR(l,i)GR(i,l'). (21)

From this equation, it is now possible to derive an ez-
act expression for the inverse retarded Green’s function.
First, we see from (II C) the following form of the inverse
functions, which may be understood as operators in time
space when the internal integration is performed,

-—zhla—ﬁi

Ry—1 _
(@) rRrD) = = Viho o1~ ar

(239~

+ iVr) ]5(7)5(7~)

2m
—>R(rRrT). (22)

If we add the adjoined equation and use the properties
of ¢ functions, we find in the momentum-frequency rep-
resentation the exact expression for the inverse Green
function,

(GBY Y (pRwT) = [ - 22;—] — 2E(pRuwT). (23)

The problem is to find the retarded Green function itself
for any approximation of X, see [67,68].

With conventional gradient expansion, we can invert
the field-free Dyson equation [69] (IIC) up to a second
order gradient expansion,

a(pwRT)

_ 2ImEE (pwRT) (24)
[w — £ — ReZF(pwRT)]? + [Im3R (pwRT)]?.

For small imaginary parts of the self-energy and, conse-
quently, a small damping, one can expand this expression
following [70,19]

a(pwRT) = 276(w — e(pRT))

149 dw ImER(prT)
BE / © @ — e(pRT)

_ R
Bwa — e(pRT) Im>*(pwRT), (25)

where P denotes the principal value. The quasiparticle
energies w = ¢(pRT) are a solution of the dispersion re-
lation,

2

w — gyﬁ — ReZ®(pwRT) = 0. (26)

It is noteworthy to remark that (25) fulfills the spectral
sum rule [71],
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dw
/i;r—a(prT) =1.

The total one-particle density follows from the spectral
function multiplied with the distribution function,

na[RT] = -5; 5 i WRT)

/%ImE (pwRT)[F (wpRT)

1

w = Ea(pRT) . (27)

~ iy (PRT)] 5P

The first one contains the contribution of the freely mov-
ing particles, whereas the second one absorbs the contri-
bution of the correlated pairs. This procedure leads to
the generalized Beth-Uhlenbeck approach [17]. In equi-
librium situations, the resulting thermodynamic proper-
ties was discussed in several papers [17,19].

III. T-MATRIX APPROXIMATION

In order to describe short-ranged two-particle interac-
tions, it is necessary to introduce the standard approx-
imation of the many-particle theory, the T-matrix ap-
proximation [6,52,47]. In the following, we derive this ap-
proximation with full influence of the time dependence,
assuming that the Kadanoff-Baym equations are valid
(13). This establishes a generalization of the known re-
sults.

From Eq. (5), the introduced self-energy can be ob-
tained from the two-particle Green’s function by

Sa(1,1) =Fi Y / d2d1"d3d3'V,(1233")
b

xG2(33'1"21)G 1 (1"1), (28)

where the existence of the inverse Green’s function is en-
sured by the weakening of initial correlation as discussed
in the preceding chapter. Further, we introduced the
different sorts of particles by a,b, which may be distin-
guishable by spin, isospin, etc.

In order to consider only binary collision approxima-
tion in the two-particle Green’s functions, we can write
for the causal one [25],

G2 (121'21) = G*(11')G®(227) F 8asG2(121)GP(21')
i / d1d1'd2d2’
x [G*(11)G?(22) F 6.6G*(12)G*(21)]
x(12|Tas|1'2'YG*(1'1)G2(2'27F).  (29)

From (28), we can now easily conclude that the causal
self-energy becomes

Sa(11)) = ;iz/dzdzfaa(yzﬂ [(12]Ts/2'1")
b
60y (12T 1'2))] (30)

Here, the sum of ladder diagrams is defined as causal T
matrix,

(12|Top|1'2') = Vap(121'2") +i/did?d3d3’Vab(1233’)G°(3i)Gb(3’§)(iilTabil’z’)

= Vo(121'2') + i / d1d3d3d3' (12| T, |12)G*(13)G¥(23')V (33'1'2). (31)

Since the interacting potential is assumed to be local in
time, we can simplify the general equations. First we get,
from the definition of the T matrix (31),

and, therefore, for the causal self-energy

$.(11) = ;iz/dmzdmgca(m;t;zztf)
b

T |zy25t1)- (32)

Here and in the following, 7°* shall indicate the
(anti-)symmetrized 7" matrix corresponding to (30).
From the consideration of the Langreth-Wilkins rules
(Appendix A), we can immediately take the relations for
the other Green’s functions, which can be seen directly

X (.Tliltztli

from (32). To save space, we write the equation in op-
erator notation and assume all integration and variables
to be the same as in (32),

SR/A = iTRAGS £ TSGR/

= FiG<TR/A £ iGR/ATZ. (33)

The assumption of time local potentials results in inter-
esting relations for the defining equation of the T" matrix
(31). With the abbreviation

<$1$2tlgab|f152f> - Ga($1tflt_)Gb(I2ti'2£), (34)

we get the causal T matrix,
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(z122t| Top|z @5t') = Vop(z1 — T2, 2y — 25)8(t — t') 28(z1 + 2 — 22 — )

+i/dild.’fzd$3d$gvab($1 — Ta,T3 — :Ug)<$3:Egtlgab|il.’fzf)(.’El:l—tzﬂTabimllmlztl> . (35)

Now we can again apply the Lengreth-Wilkins rules of Tt 2 2y — dpP dp dp’
Appendix A and find the relations in operator notation (z122|T (1) |21 23) = (27h)3 (27h)3 (27h)3

> > > i P (21 tar—ai—zh)/2
T< = iVGRT< 4 iVG<TA, xe e
TR/A = v 4y GR/IATR/A, (36)

xetf(@i— @2)+iB () —z})

. R . x(p|T(PRtt')[p'), (38)
By replacing the operator 1 — iV G in the first equation

with the help of the second one, we derive the generalized where R = (z1 + @2 + 2} + 23)/4 . With the help of
optical theorem [6,42,25]: this notation we get from (32), the following closed set of

equations to determine the self-energy in T-matrix ap-
proximation, provided the connection between G< and

(z122t|T, b|:cla:2t) /dildiz'ld.izdis'zdfdf' G? is known,
R - > do <
X (z122t|T, b|$1mzf) >3(pRitt') = ?iZ/ﬁG?(ﬁRt't)
x (£1228]G5, |7, Z,F) b
" 1y p—p z - n|P—P
x (&, &8 | To|xyzt"). (37) X5 |Tex)ap(p + 5, B, 8, )| ==
Below we will use the Fourier-transformed two-particle (39)
functions, which we introduce in the following way: and
-
P=P|r2 45 Ryt t)| B P = [ e (PP R, %)
< 2 Tab(p+p:Ratat) 2 > - / (27r7i)6 (p + P, (p+p,

T4(p+ 5, R, T, ¢) T4(p+5,R,T,¢)

[ __>< p2p>], o

s
(9195 (p + b, B, F)p") = (27R)*6(p' +p") G5 (p TPy, R )G,f (’% +p",R,t_t'). (41)

with

From the T-matrix equations (36), we get for the retarded one
: dp ¢ P z P
<p|T£(PRtt/)]pl) = Vab(pvpl)(s(t - tl) + Z/ ﬁ/ dtVab(p7 ) [G> ('2- —ﬁv R7 tt) Gb> (5 +P» R? tt)

~as (5 -prit)s (5 45 Rt | GITS(PREB). (42)

This system of equations were derived assuming small microfluctuations in space in comparison to macroobservables
R. Thus gradient expansions in space can be applied. It is important to remark that equations (39,40,41) contain the

exact time behavior for both, microscopic times as well as center-of-mass times. Taking furthermore into account the
Lipavsky ansatz to close the equation for G< and G, see (B7), we obtain after changing the variables ¢ = 7 + 7:

ITE(E, TRI)I) = Vas(p1)0(7) = [ G Vanlop) [

< (7

x[l—fa (—Izg—ﬁ,T—%-&-m,R) fb< +p,T—%+w,R)]. (43)

p

Tj},(K,m,T+ ;T,R)

/> o} lea(K/2—p RT) ey (K/24+5,R,T)] (27

To make further progress it is useful to discuss the different times, which occur in the preceding integral. First, we have
the difference time 7 and z, which couples the scattering events to their statistically weighted values f(K,T). Second,
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we see a complicated non-Markovian behavior by retardation of center variables, which means that the system has
a memory of former events. The z integration additionally couples to a fast oscillating phase itself. Therefore, it is
justified to apply a saddle-point approrimation, which means we have to take the values in retardation times as ¢ = 0.
Then the resulting equation takes the form

ATE(K, TRT)) = Vaolp,)3(7) ~ i [ sz Vo) [

_ T / ilea(K/2—P,R,T)+ep(K/2+5,R,T)]|(z—T)
XD Tab K7$7T ’R p €

x[l—fa(g—ﬁ,T—z )f,,( +p,T—§,R):|. (44)

It is possible to rewrite (44) in a more familiar way

@ (p|ITE(K,,T — 7)Ip')
(PITEE wT)Ip) = Ve (po7') - /(2 iy Vab (P:P / /27rea (K/2 - p, R, T)+el:,(K/2+p,R T) — & — ie

x[l—fa(g—ﬁ,T—; ) fb( +5,T — ;,R)]. (45)

The equilibrium limit is the familiar Bethe-Goldstone equation. The equation (44) with the factor 1 + f ¥ f =
(1Ff)(1F f)—ff is, in principle, more than the Bloch-de Dominicis equation [72] with a respective factor (1 f)(1Ff),
by allowing for both, intermediate particle-particle and hole-hole, excitations. In the fermion zero-temperature limit,
Eq. (44) corresponds to the Galitskii [73] equation, while the Bloch-de Dominicis equation corresponds to the
Bethe-Goldstone [74] equation. Differences between the equations have been discussed in detail in the literature (for
references see [6]).

Here, we like to point out that (45) is an off-shell equation for the T' matrix. Therefore, correlations like bound
states are included. This will become crucial for the discussions in the next sections.

>
For the required self-energies (39), we use the optical theorem (37) to eliminate T'< by retarded functions. Then
we can follow each step described above for the 7' matrix, and using the same saddle-point approximation, we obtain,
in time domain the form,

!
d
zj(ka,TT ) Re Z/dk(zd,l:,;’ k"é( +kp — kI, — ki)

X[1— f(ke)] £ (ko) £ (k) e%“f‘k“*“' melkin
y ko — kb —ky
2 2

ke k ko — kb
2 2

TE (ko + Koy w, T)| =

(TA)ap (ko + kpyw, T —7)

; (46)
w=e(k!)+e(ky)

where f(k,) = f(ka, R, T — 7).

IV. KINETIC EQUATIONS

In order to evaluate the general kinetic equation (14), we use the expression for the self-energy in the T-matrix
approximation obtained above. The generalized kinetic equation (14), reads, finally,

Ia ke 058p(kaRT)\ 8  05%p(kRT) 8
2 4 (Za y ZZHE Fat) — ZZHRet) ko RT
’[aT +<ma ok, oR, R, ok, | W (kaET)
dk dkbdk / e(ka)+e(k € k' e(k
_R/ et dhadkndky, 5y Ly ~kb)/ dre bletka) (k) —e(kl)—<(k))]r

X{[(l—f(ka)][l— Fk)] f(kq) f(ky) — [1 = F(RQ)I[1 — f(ky)] f(Ka) f(Kb)}

ko — I ! k' — k!
X < a -~ ky Tﬁ[ka + ko, e(kg) — e(ky), T] k, 3 kb>< a 5 k Té‘;‘()ab[ka + ky, (kL) — e(kb), T — 7]

ka - kb
—2 .

(47)
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Here f(k) = f(k,T — 7) stands for using the generalized ansatz.
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Neglecting the retardation in the distribution

functions, one obtains the usual quantum Boltzmann equation. If we had used the conventional ansatz, the retardation
in the distribution functions would be one half. This is inconsistent with the density operator technique, which may
be seen from the Born approximation [62]. The Born approximation of the collision integral in (47) takes the following

form:

dk', dkpdk!,
Iab hz/‘—'(z—h)g—é(k +kb

x{fafs(1 = fa)(1 = fo) = fafo(1 - fo

where f(kq) = f(ko, R, T — 7).

This equation can be generalized to high field prob-
lems [62,67], which was first derived by Levinson [63]
for electron phonon interaction by density operator tech-
nique. Other authors have redeveloped this result by the
Green’s-function technique [75] with a } discrepancy in
the retardation times, which was corrected later by the
generalized ansatz. Reference [76] specified the most con-
venient gauge for the dc field. This field-dependent Boltz-
mann equation is most commonly used in integral form
[77], where it is named Barker-Ferry equation [64]. Simi-
lar kinetic equation were derived for a pulse excited semi-
conductor transport [78-80]. Without the used saddle-
point approximation, one retains with double time inte-
grations [81]. There an additional damping is introduced
to ensure convergence. It can also be found in the gen-
eralization of magnetic fields in [82,83]. Further it is in-
teresting to remark that this equation fulfills the global
energy conservation, i.e., the sum of kinetic and correla-
tion energy [8,84].

In order to get more physical insight into the retar-
dation effects, we expand the kinetic equation up to the
first order in retardation times. After this we will calcu-
late the retardation completely. From the phase factor
of (47), one concludes that the first order expansion is
justified for times ¢ > Tpem With the memory or collision
duration time Tmem = 1/E.

Choosing as typical energy the Fermi-energy results
in the known Landau criterion. Incidentally, in the early
1950’s the criterion i/kpT < T was supposed to limit the
validity of the Landau Fermi-liquid theory for metals [85].
Later it was shown by Landau that this criterion is irrel-
evant and he proposed the correct criterion 7 =~ 1/FEp,
which is much less restrictive in metals. For a semi-
conductor situation [86] it yields 7 ~ 107!* s, which is
negligible compared to ordinary relaxation times around
10710 5. In a typical nuclear situation this collision du-
ration time is around 2 fm/c, where a Fermi energy at
nuclear density is used. This can be compared with or-
dinary relaxation times of 200 fm/c in the same nuclear
system to show that this expansion (49) is sufficient.

Now we proceed to prove that this first order retarda-
tion effect is equivalent to the Beth-Uhlenbeck correla-
tion density describing bound states. From the spectral
representation of the 7' matrix, one has TRT4 = 1/2|T|?
neglecting higher order correlations and the first order
expansion of the collision integral (47) reads

k:; - k{))Vazb(ka - ka’) / dr COS[(GQ + €p — 6; — e;)) 'r/ﬁ]
0

(1= f3)} (48)

9, (ke OTmp(kaRT)a 2
aT " \'m ok, oR,

_ 0%ur(keRT)a 8
OR, kg

:|fa(kaRT)

=I5+ s (49)
b b
IB is the quantum mechanical Boltzmann collision term,

dk’ dkydk.
I = ﬁ/ ey k—b5(ka+kb-ké—kﬁ)

(2mh)®
x| (kaks| Ty | ki) *276 (Eap — Eip)
x{fafo(LF fa) A F fo) = 1 F fo) A F f3) fafo}s
(50)

whereas I;it describes the retardation effect

dk/ dky,dk;
ret Zra b b A
15 = g [ T (et ey K~ k)
1
x| (kaks|T S5 |kl Kkp)|* P'm
{fafe(LF fa) A F fo) — A F fo) (1 F f3) fafo}-

(51)

Here, P’ = lim,,_,o a% :czanz denotes the differentiation of
the principal value and E,; = €, + €. A similar type of
equation was given in [87], where the energy conserving
property was pointed out. Reference [23] gave a complete
treatment for classical nonideal plasmas resulting in a
comparable form of collision integral.

It differs from the result of Snider [30], where a gen-
eralized kinetic equation is derived with the local hy-
drodynamic variable of p%?/2m. Here, we give a more
general result including quasiparticle self-energies instead
of free ones. From (49), we see that the time deriva-
tive is renormalized, if we define 8f°7°," =3,I%. In
[30], the renormalization of the time derivative lea.ding
to a—af( f + feorr) is given. The derivatives with respect
to space and momentum concerns, here, only the free
distribution, whereas [30] it acts also on f + feorr. This
difference is due to the different ways of splitting the cor-
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relations into drift and collision term, as we pointed out
after Eq. (14). Here, we claim to be correct in all time
convolutions.

It is illustrative to compare our found f.or with the
kinetic equation of Baerwinkel [21,88]. He gives the
renormalization of the time derivative as a ¥ functional.
Whereas the momentum integral over the ¥ functional
vanishes, the integral over our f.o.r remains finite and
will, therefore, contribute to the virial correction. Due
to Baerwinkel, the virial correction turns out from the
collision integral. The reason of this difference is again
the different partition of correlations between drift and
collision term. We summarized all correlations beyond
Hartree-Fock into a retarded collision integral and ob-
tain a net effect accumulated in fcorr. We further gener-
alize to [21] concerning the complete time convolution of
the T-matrix equation resulting in a contribution, which
cancels some terms of Baerwinkels ¥ functional.

V. GENERALIZATION OF BETH-UHLENBECK
CORRECTIONS TO NONEQUILIBRIUM

A. Balance equation for density

Now, we turn to the balance equation and concentrate
first on the density. Thus one has to integrate the gener-
alized kinetic equation (49) over momentum. The Boltz-
mann term vanishes and for the conserving total density
we get from the normalization of the Wigner distribu-
tion to the free particle density ngee = V(f1 Zp f and

the correlated density norr = VO‘1 Zp Seorrs
o
ﬁ (n?ree + ’n'(clorr)

= Vi [ Goss (Ve GRT) fie GRT).  (52)

We recognize that in the equilibrium limit, where no gra-
dients occur, the sum of free and correlated density is
conserved. This justifies the introduced interpretation of

nCOI‘l’ .

The correlated density takes the explicit form

o (2wh)® 1 ,
ncorr - Voﬁ V4 zb: . kg kl P Eab — El
X{fafo(LF fa) (A F fo) — (L F fo) A F fo) fafo}
X (kaks|T (Egy) | koks) (koky| Tek(Egy) kaks), (53)

where we introduced the summation over momen-
tum instead of the integration and used the (in-
medium) T-matrix operator in analogy to the scatter-
ing theory (kiks|T|k}kS) (2mh)36(k1 + ko — k7 —
k’)(k1k2|T£(pR‘rT)|k'k'2) Now we define the two-
particle nonequilibrium Bose-like Wigner distribution
function g by

fafb = ga+b(Eab)(1 F .fa + fb)7

which is adopted from the equilibrium relations. Fur-
ther, we use the free nonequilibrium retarded two-particle
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Green function, which can be derived from (34)
L ¥ fa(pRT) F fo(pRT)
GoE(a,b,w) = —

2 (%bw) €a(PRT) + €,(pRT) — w — ie (54)

and obtain by introducing a dummy w integration

@ (2mwh)3
Neorr = Voh V4 Z Z / gab w) gab( a.b)]
b kaky,k;

xReGSF (a,b,w) (ke k,,]T(w)|k;k,,)1mGgR(a b, w)
X (ko k| TS (w) kaky).- (55)

The structure of this expression becomes more transpar-
ent if one write the operator notation omitting the mo-
mentum representation (see Appendix C),

ngorr_ Zﬂh ZTY{/ [9ab(w) — gab(Eas)]

xReGY (a b,w)T(w)ImGY(a’, b, w)Ts; (w)} (56)

Now one can apply the optical theorem derived in Ap-
pendix C to derive, finally,

P LI ) A ——
S{ S o) — gus()

nCOrr = Voh
xReGg' (a, b,w)ImTex(w)}. (57)

This expression is just the same as derived from the ex-
pansion of the spectral function (25) leading to the Beth-
Uhlenbeck approach, as we review shortly in the next
section.

B. Correlated density from the expansion of the
spectral function

Besides the balance equation derived from the kinetic
equation, we can calculate the correlated density directly.
Therefore, we turn to the evaluation of the correlated
density (27), which was obtained by the expansion of the
spectral function (25). The required imaginary part of
the self-energy can be rewritten schematically,

ImX(tt')

= Fi [G<(t't)ImTE(tt') — ImGR(t't)T<(tt")] .

(58)

The further evaluation can be performed neglecting time
retardations, because we like to concentrate here on the
effect of the expansion of the spectral function (25).
Therefore, the frequency domain is the favorable rep-
resentation. Introducing the same nonequilibrium Bose-
like distribution function g like in the proceeding section,
we get with (54) from (37),

(k|T<(pRwT)|k) = 2igas(w, RT)Im(k|T*(pRwT)|k).
(59)

Introducing this equality into (58), the self-energy reads
(19]
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Im¥, (pRwT) =

Z/ <pp

x276(w + ep(p’) — &').

(p+p,R,w',T)| 2

”'> [fo(@' RT) % gab(w'RT)]

(60)

From this expression and setting ¢ = p + p’,k = (p — p')/2 the correlated density in (27) can be evaluated with the

result

Tcorr =
0 bkq

x[1F fa(k + q/2RT) F fo(k — a/2RT)] 5~

Using once more (54), we obtain just the expression (57)
of the last section.

Introducing the notation

T(kqkw') = (k|Tgy (g, R, o', T)|k)

this expression agrees with the form [Eq. (2.18)] given in
[19]. In equilibrium, it yields just the mass action law and
the bound state parts as well as the scattering parts to
the equation of state. Therefore we have shown, that up
to the first order expansion in the retardation effects in
the kinetic equation and the Beth-Uhlenbeck expression
of the correlation density are equivalent.

In other words, it turns out that the memory effects
describe the correlation in the system. Further, this cor-
relations can be divided into bound state and scatter-
ing contributions according to [19,17] as will be demon-
strated in the next section.

C. Bound states and scattering contributions

In order to evaluate the expression (57), which was
derived now by two different ways, we introduce a fur-
ther dummy w integration and get, with the help of the
spectral representation of the 7" matrix,

— 2”’” S [ )T @)
—[Tr(w)] G,-(w)}. (62)

Here, we used the T operator of Appendix C. It is to
be noted that all quantities are dependent of the total
center-mass coordinate R and the macroscopic time ¢ ac-
cording to (38). By this way, we generalize the treatment
of [19,17] to inhomogeneous nonequilibrium situations.
Applying now the relations of (C4), we get, finally,

Neorr = 27rfi)3 Z/ _gab

X Tr{G;(w)[T () Gi(w)[T(w)]*'}. (63)

Now one can distinguish between the bound state con-
tributions as poles in the T operator at real energies and
scattering contributions [89]. The further treatment can
be performed in the same way as given in [89,19,17]. The

-3 Z/HIm(MTab(q,R W', T)|k) [9(w'RT) — gas(ea(k + ¢/2, RT) + es(k — /2, RT))]

1
€a(k + q/2RT) + eo(k — q/2,RT) — w'"

(61)

result is
(2mh
e = ST Z[ 3 gus (B @)

+7rZZ/ dkgas(€a(qg + k/2, RT)

kmin

1 dé;(kRT

x(21 + 1) (1 - %’2(—1)’)], (64)

2sin®[6;(kRT))

where the in-medium phase shifts §;(kRT') are introduced
as in [17] in order to solve the T-matrix equation in chan-
nel l. It has to be pointed out that (64) is a generalization
of the known Beth-Uhlenbeck virial correction [17] in that
it requires the solution of the kinetic equation and from
the resulting distribution functions the time-dependent
T-matrix equation.

Similar treatments lead to virial corrections which re-
sembles, but does not reproduce exactly, the quantum
Beth-Uhlenbeck formula [22]. Later it was shown [28]
that by adding a virial correction, the result of [22] can-
cels and the Beth-Uhlenbeck virial correction turns out.
In the framework of real-time Green’s-function formalism
the correct second virial coefficient for nondegenerate sys-
tems was derived also in [21]. The form (64) of [89,19,17]
is the most elaborate one, because it shows the partition
of the correlated density into bound states and scattering
states [90].

VI. VIRIAL CORRECTION TO THE ENERGY

A. Conservation of energy

In the last section, we derived the equation of state
for the density. It was shown that it is equivalent to de-
rive the correlated parts by memory effects and by the
expansion of the spectral function. The same procedure
can now be applied in order to derive the expression for
the correlated energy. Therefore, we start from the gener-
alized kinetic equation (49) and multiply with the quasi-
particle energy €, and integrate. The correlated part can
be handled in the same manner as before to end up with
an expression where in (64), the function g.s(z) is re-
placed by x/2g.5(z). The balance equation reads
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o . . dk  9e(kRT).
8_T(Efree+Ecorr) /(27Tﬁ)3 8T
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[fa(kRT) + foor: (kRT))

dk

~VE | Gh)

———(e(kRT).ViZ5" (kRT))f(kRT). (65)

The same steps are carried out as were done for (64) and the correlated energy reads

o« _ (2mR)?
corr — 2V02ﬁ

y l dé; [kRT)
T dk

and %7%'& = 57, It This result is an extension of the
known approaches to Beth-Uhlenbeck virial corrections
and, to the authors knowledge, the form (66) was not
given before.

Equation (65) shows that in the stationary case, not
only the sum of the kinetic and mean-field energies, but
also the sum of the free and correlated energies, are local
hydrodynamical variables. Therefore, this is an exten-
sion of the Boltzmann theory. The correlation energy
E_,;; is just the mean interaction energy. Therefore, the
found kinetic equation preserves global energy. This is
the same result as may be found in [23] for binary col-
lision approximations in classical nonideal plasmas. In-
stead of repeating the explicit proof, we show the ther-
modynamical consistency between (66) and (64) in the
following.

B. Thermodynamic consistency
Up to now we have given two different virial correc-
tions, to the energy and to the density. Between them are

a —

Neorr = _ﬁéﬁ (

S {In[1 — e—ﬂ(E—uu—ub)], v}
1- 2%
"

. oy D 1
Z{ln 1 — € B(E—pa—p )] Z}au (——-6%—) 2[@ 82 Z{ln

Due to the thermodynamic relation n = (0P/8u)r, we
deduce the correlated part of the pressure. Further,
we find from the thermodynamic relation (8U/0V)r =
—(B9/8B + 1)7 P the correlated energy. Employing the
equality valid in equilibrium,

1o} o
,Bgla.fa = _(ea - :u')a_ufav

and corresponding relations for 3, we obtain by this way
just the correlated self-energy (66),

k PIRACTMEAD )+w22/

2sin?[6; (kRT)] (2 + 1) (1 - "__( Y )]

k(ea + €b)9ab(€a(q + k/2RT) + es(q — k/2RT))

kmin

(66)

the thermodynamical relations that the density is con-
nected with the pressure P by n = (8P/du)r and from
the pressure one finds the energy following(8U/0V)r =
—(B8/0B8 + 1)r P

In order to check the thermodynamic consistency of
(64) and (66) we go to the equilibrium situation, where
gab is the Bose distribution function. Then we can write
down the correlated density (64) as

" 1
Meorr = ;{ eBleates—pa—us) — 172}

Here, we abbreviated the sum and integrals in (64) by
> {} and give explicitly the dependence from the Bose
distribution g and the self-energy ¥, which is tempera-
ture and density dependent. All other explicit functions
are not important for the proof here, because no other

(67)

density or temperature dependence occurs. The corre-
lated density can now be rewritten as
I
e BE—pa—ps)| 7y _ B4 . 68
T L

Ecorr =

l{ (€a + € — pa — 1b) E}
b

2] eBleates—ta—ns) — 1’

This shows that the expressions we have derived for the
correlated density and the correlated energy in the gener-
alized Beth-Uhlenbeck approach are thermodynamically
consistent.

VII. CONCLUSION AND OUTLOOK

In this paper, we derive a generalized quantum ki-
netic equation for dense quantum fluids employing the
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real-time Green-function technique. Within the proposed
time-dependent T-matrix approximation for strongly in-
teracting Fermi or Bose systems the resulting kinetic
equation is non-Markovian. This is an inevitable result of
a reduction of the multiparticle dynamics to a one-body
kinetic equation. The generalized ansatz used, which
ensures causality, provides a retarded Bethe Goldstone
equation, valid in nonequilibrium situations at all time
scales. This is due to the explicit treatment of the com-
plete time convolution of macroscopic and microscopic
time scales.

The generalized kinetic equation found differs from the
result of Snider [30], where a generalized kinetic equa-
tion is derived with the local hydrodynamic variable of
p%/2m. Here, we give a more general result including
quasiparticle self-energies instead of free ones. Further
differences are due to the different ways of splitting the
correlations into drift and collision terms. Here, we claim
to be correct in all time convolutions.

In the kinetic equation of Baerwinkel [21,88], he gives
the renormalization of the time derivative as a ¥ func-
tional. Whereas the momentum integral over the ¥ func-
tional vanishes, the integral over our f.,;r remains finite
and will therefore contribute to the virial correction. Due
to Baerwinkel, the virial correction turns out from the
collision integral. The reason for this difference is again
the different partition of correlations between drift and
collision terms. We summarized all correlations beyond
Hartree-Fock into a retarded collision integral and ob-
tain a net effect accumulated in a retardation. A further
generalization to [21] is-that we consider the complete
time convolution of the T-matrix equation resulting in
a contribution, which cancels some terms of Baerwinkels
¥ functional. From the general retarded transport equa-
tion we derive an expression of virial correction, which
can be identified in equilibrium with the quantum Beth-
Uhlenbeck form of the density. Therefore, our derived
kinetic equation is consistent with the quantum Beth-
Uhlenbeck approach in equilibrium.

The correlated density can be interpreted as the den-
sity of correlated pairs containing bound states and scat-
tering states. Moreover a correction to the energy is
given, which is thermodynamically consistent with the
correlated density to any approximation of quasiparticle
energies. This explicit expression of correlated energy in
terms of nonequilibrium phase shifts is a different result.
In view of the consequent nonequilibrium treatment, we
can give the generalization of the Beth-Uhlenbeck correc-
tion terms to time-dependent nonequilibrium situation of
finite systems. As shown in earlier papers [17], these cor-
rections allow a consistent treatment of the formation of
deuterons and the Mott transition as a pressure ioniza-
tion. Here, this results can be transmitted to transport
equations on the same level of approximations. The re-
maining task is to solve the derived general kinetic equa-
tion. From the resulting time and space dependent dis-
tribution functions, one has to solve the time-dependent
T-matrix equation. This provides the virial corrections
in nonequilibrium for finite systems.

In this paper, it is shown how higher order correlations
can be incorporated. Especially the question of initial
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correlations can be investigated. Some steps to solve this
problem were made in [6,52] and citations therein. We
will treat this appropriate choice of initial correlations in
a forthcoming paper.

To summarize, we have shown the equivalence of the
statistical description of correlated states, which are a
sum of bound and scattering states, and the retarded
non-Markovian transport equations. Both alternative de-
scriptions can therefore be used to describe dense inter-
acting Fermi or Bose systems. The presented generalized
kinetic equation describes the influence of correlated two-
particle states, which can be either bound or scattering
contributions, to the one-particle distribution function.
We do not describe the explicit formation of bound states
in a kinetic equation by reaction terms. This is to be done
on the three- or higher-particle level [91,40,24]. Here, we
demonstrate that the inclusion of memory effects leads
to a consideration of two-particle correlations already on
the one-particle level.

As an open problem it remains to show how higher
order corrections in the ansatz will act on the kinetic
equations. This will be treated at another place. Fur-
thermore, the direct comparison with the density matrix
approach to nonequilibrium [41,44,92] will be a subject
of future work.
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APPENDIX A: THE LANGRETH-WILKINS
RULES

With the help of (9) it is possible to establish useful
algebraic rules known as Langreth-Wilkins rules, which
describe the way to get correlation or retarded functions
from causal ones. They were first found by Langreth
and Wilkins [93]. If we have, e.g., products of Green’s
functions and integration over inner variables,

c(1,2) = /diA(l,i)B(i,Z), (A1)
we can show that with the help of (IIA) the following
rules can be obtained building up correlation functions
from (A1),

> >
ci(1,2) = /diA’Bé + /d1A<B“, (A2)

cT/*(1,2) = /diA’/“B'/“. (A3)
Using these relations, one can find the following gener-

alized Kadanoff-Baym equations from (12) by using the
inverse interaction free Green’s-function Gy * [62],

[Gy — ReE, G<] = [£%, ReG] + % (G<,57}

—%{G>,E<}. (A4)
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Here, [,] and {,} denote the commutator and anti-
commutator of integrals (A1), respectively. This result
is, in principle, equivalent to both equations (13) and is a
compactly written form. Nevertheless sometimes it is of
advantage to use this operator notation in order to inves-
tigate properties beyond the quasiparticle picture [42,8].
From this operator equation, it is possible to derive the
time diagonal equation (14) as well [62,64].

APPENDIX B: DERIVATION OF THE
GENERALIZED ANSATZ

Following Lipavsky et al. [65], we give the derivation
>
presented in [64] and define auxiliary functions Gf/a by

> >
Gs(tita) = O(ty — t2)G<(t1t2),

G2 (tat) = O(ts — £1)G= (t1ta), (B1)

which is just the thermodynamical Green’s function origi-
nally introduced by Zubarew [92]. Applying the equation
of motion to these functions, we derive interesting rela-
tions. It can be found for the time derivative of the first
equation,

1o}
i— G (tit2) = i6(t1 — t2)G<(t1t2)
oty

o
+0O(ty — t2)i— G<(t:1t2).

ot (B2)

Replacing the time derivative on the left with the help of
the first of the Kadanoff-Baym equation (13) and using
the equality
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i
Ot: — tz)/ (2> - 59)G<
iz
— Ot — tg)/ (> - £9)@<
-
+O(t1 —t2) (Z7 - E%)G*
—ta
ta [e)
— ot —tz)/ (> - 5<)G< +/ TGS, (B3)

we obtain for (B2) the relation
(Gr)_le = ’L&(tl — tz)G<(t1t2) + @(tl - tz)
t2
x / dE[E" (6 0)G< (Bt2)
— 00
+I<(t18) G*(Et2)]-
Finally, operating with G” from the left, we arrive at
G (tite) = O(ty — t2)G<(t1t2)

= FG"(t1t2) fw (t2)
+ / " / " GG () [T (DG (fta)
+E<(T)G(tt2)], (B4)

where fy is the Wigner distribution function. The same
analysis can be repeated for G5 with the result

G:(tltz) = @(tg - tl)G<(t1t2)
=+ fw (£1)G*(t1t2)

t t
+ / di [ dfG<(t.o)=e @)
to oo

G (HDSEDIG (). (BD)

These two equations allow, in principle, an iterative con-
struction of G<(t1t2) from its time-diagonal component,
i.e., the Wigner function f. The first term gives the mod-
ified ansatz, while the iterative corrections represent an
expansion in terms of the various relaxation times in the
system [64].

Using only the first terms, we can write in Wigner
coordinates

G<(p,T,7) = i[fw (p,T + %)Ga(p,T,T) — fw (p,T - %) Gr(p,T,T)]

= ifW (p7T - er_|> [Ga(pa T7 T) - Gr(pv T7T)]

. T
= :FZfW (P,T - 7)0‘(17’ T, T)a

and analogously

G (k,T,7) = i[l F fw (k,T— ';—lﬂ a(k,7,T). (B7)

Here, a is the general spectral function which can be
beyond the quasiparticle approximation.

(B€)

APPENDIX C: OPTICAL THEOREMS AND
DERIVATIVES

In this appendix, we give the derivation of frequently
used optical theorems and related relations [17,19]. The
retarded T matrix is related to the T operator of scat-
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tering theory following
(kaks|TE(w)|kLEL) = (koks|T|K. ky).
We assume an operator notation and decompose the T
operator in real and imaginary part by T = T, + iT;.
Then, from the identity T' = T (T) 1T, it follows
T, +4iT; = TH(T;7' — 4T, Y)T. (C1)
In analogy it follows from T+ = T+T-1T,
T, —iT; = TH(T,7 ! + 477 1)T. (C2)
By adding and subtracting both equations, one has
T, =TYT'T,
T, = -TTT'T. (C3)

With the help of the defining T-matrix equation, 77! =
V-1 @G, with G denoting the two-particle Green’s func-

tion, one derives the off-shell optical theorem,
T,=TYG,T = TG, T™. (Cq)

In a second step, we give the derivative optical the-
orems with respect to the frequency derivation 7/ =
0T /0w. Differentiating Eq. (C3), one has

T, =THT T+ TTT7 T + THTV'T
=TV + T +iTY' G,T —iT*Gyp —T*G.T (C5)
and, finally,
T! = —T+ G,T +iT*G;T' + T*G.T. (C6)

From the derivative optical theorem (C6), one can de-
rive useful relations considering the trace of (62). From
(C6), one gets by multiplying from the right with G; and
using the optical theorem (C4),

T (T.G; — T;G) = 2Im Tx(G;TG;T*"). (C7)
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